COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEMESTER 7			
COURSE TITLE	ECOLOGICAL ENGINEERING				
INDEPENDENT TEACHINg in case credits are awarded for separate					
course, e.g. in lectures, laboratory e awarded for the entire course, give and the total co	xercises, etc. I	If credits are	TEACHNG HOURS	CREDITS	
		HEORETICAL BACKGROUND 5			
	THEORETICAL BACKGROUND 5 5 LABORATORY PRACTICE				
		TOTAL	5	5	
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Scientific Expertise				
PREREQUISITE COURSES:	INTRODUCTION IN ENVIRONMENTAL ENGINEERING, ECOLOGY				
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

Upon completion of the course the students are expected to

- Get a good understanding of the processes involved in the removal of pollutants from natural systems
- Develop skills in the planning of natural systems for the removal of pollutants from wastewaters
- Develop the capacities to evaluate natural and economical conditions for the application of

natural systems in wastewater treatment

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and Project planning and management synthesis of data and Respect for diversity and multiculturalism

information by the use of Environmental awareness

appropriate technologies, Social, professional and ethical responsibility and sensitivity to gender

Adapting to new situations issues

Decision-making Critical thinking

Individual/Independent Development of free, creative and inductive thinking

work ...

Group/Team work (Other......citizenship, spiritual freedom, social awareness, altruism

Working in an etc.) international environment

Working in an interdisciplinary environment

Introduction of innovative

research

The teaching methods followed and the course content encourage:

- 1) The search, analysis and composing of information with the use of relevant technologies
- 2) Decision making upon critical evalution of data and information available
- 3) Group working
- 4) Individual working
- 5) Working in an international and multidisciplinary environment
- 6) Production of novel research ideas
- 7) Respect to environment and strengthening of environmental awareness
- 8) liberal, constructive and inductive thinking

(3) COURSE CONTENT

This course will focus on the use of natural systems of low technological and construction requirements and of low cost for the treatment of wastewaters. Special attention will be given to systems based on natural and biological processes for the treatment of wastewaters like lakes, anaerobic reservoirs and constructed wetlands

- 1. Introduction in Ecological Engineering Εισαγωγή στην Οικολογική Μηχανική
- 2. Wetland systems: Fundamentals, basic applications and parameters which affect their operation
- 3. Constructed wetlands of surface flow
- 4. Constructed wetlands of underground flow
- 5. Evapotranspiration of wetlands
- 6. Microbial processes in constructed wetlands
- 7. Wetlands of vertical flow
- 8. Application of constructed wetlands cases studies
- 9. Stabilization ponds
- 10. Maturation ponds
- 11. Biobes Fundamentals and applications

(4) TEACHING METHODS-ASSESSMENT

(4) TEACHING METHODS-ASSESS	SMENT				
MODES OF DELIVERY	In-class lecturing, face to face				
Face-to-face, in-class lecturing,					
distance teaching and distance					
learning etc.					
USE OF INFORMATION AND	Use of power point presentations				
COMMUNICATION TECHNOLOGY	Email communication with students				
Use of ICT in teaching, Laboratory	Upload of literature, examination papers and teaching				
Education, Communication with	material through e-class				
students					
COURSE DESIGN	Activity/Method	Semester workload			
Description of teaching techniques,	Lectures	39			
practices and methods:	Theory study	35			
Lectures, seminars, laboratory	Essay writing and	35			
practice, fieldwork, study and	presentation	25			
analysis of bibliography, tutorials,	Course total				
Internship, Art Workshop,	(25 hours of workload per	125			
Interactive teaching, Educational	credit unit)				
visits, projects, Essay writing, Artistic					
creativity, etc.					
The study hours for each learning					
activity as well as the hours of self-					
directed study are given following					
the principles of the ECTS.					
STUDENT PERFORMANCE	Students performance evaluation				
EVALUATION/ASSESSMENT	_				
METHODS	• Through written exams at the end of the semester 80% of				
Detailed description of the	the final grade				
evaluation procedures:	• Presentation of a case study by groups of students 20% of				
	final grade				
Language of evaluation, assessment					
methods, formative or summative					
(conclusive), multiple choice tests,					
short- answer questions, open-					
ended questions, problem solving,					
written work, essay/report, oral					
exam, presentation, laboratory					
work, otheretc.					
Specifically, defined evaluation					
criteria are stated, as well as if and					
where they are accessible by the					
students.					

(5) SUGGESTED BIBLIOGRAPHY:

-Suggested bibliography

- Tsichritzis BA Ecological Engineering and Technology, Volume 2: Physical Methods in Wastewater Treatment University Publication, Democritus University of Thrace.
- Crites R.W. Joe Middlebrooks E., Bastian R.K. and Reed S.C., «Natural Wastewater Treatment Systems», 2nd Edition, Taylor & Francis Group, Boca Raton, USA. ISBN 978-1-4665-8327-6.

-Complementary bibliography

Lecture notes: presentations of the lectures are available in the e-class platform for all students to download