COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEMESTER 6		6	
COURSE TITLE	ENVIRONMENTAL BIOTECHNOLOGY				
INDEPENDENT TEACHING ACTIVITIES in case credits are awarded for separate components/parts of the			WEEKLY		
course, e.g. in lectures, laboratory exercises, etc. If credits are			TEACHNG		CREDITS
awarded for the entire course, give	e the weekly teaching hours HOUF				
and the total c	al credits				
1	THEORETICAL BACKGROUND		3		3
LABORATORY PRACTICE		2		2	
TOTAL		5		5	
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Background Knowledge				
PREREQUISITE COURSES:	ENVIRONMENTAL MICROBIOLOGY, BIOLOGY				
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	No				
COURSE WEBSITE (URL)	-				

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

Upon completion of the course the students are expected to

- Have a understanding of the fundamentals of Environmental Biotechnology and the relevant application fields
- Have a understanding of the main biotechnological applications of microbes in environmental practices for the remediation of contaminated environmental matrices
- Have a good understanding of the use of microorganisms as biological cell factories for the

production of novel products with low environmental footprint and relevant uses in the fields of biofuels (biogas, bioethanol, biohydrogen), in agriculture (biological pesticides, biofertilizers, biostimulants) and in other industries (bioplastics, biological enhanced oil recovery etc)

- Acquire the capacity to critically evaluate situations and data available and the ability to plan and synthesize methods and processes in order to resolve environmental problems based on biotechnology
- Develop capacities for planning new biotechnological processes for the construction and production of novel products with low environmental footprint

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management			
synthesis of data and	Respect for diversity and multiculturalism			
information by the use of	Environmental awareness			
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender			
Adapting to new situations	issues			
Decision-making	Critical thinking			
Individual/Independent	Development of free, creative and inductive thinking			
work				
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism			
Working in an	etc.)			
international environment	· · · · · · · · · · · · · · · · · · ·			
Working in an				
interdisciplinary				
environment				
Introduction of innovative				
research				
The teaching methods followed and the course content encourage:				

1) The search, analysis and composing of information with the use of relevant technologies

- 2) Adjustment to new and changing situtations
- 3) Decision making upon critical evalution of data and information available
- 4) Group working
- 5) Working in an international and multidisciplinary environment with final aim to resolve problems
- 6) Production of novel research ideas
- 7) Planning and management of constructions
- 8) Respect to environment and strengthening of environmental awareness

(3) COURSE CONTENT

The course will focus on the use of microorganisms as tools for the development of novel biotechnological products and processes with low environmental footprint. In particular

- 1. INTRODUCTION IN ENVIRONMENTAL MICROBIOLOGY AND MICROORGANISMS TOOLS
- 2. ENVIRONMENTAL POLLUTANTS AND MICROBIAL TRANSFORMATIONS: Inorganic and organic pollutants, mechanisms of microbial degradation and transformation of organic pollutants
- 3. BIOREMEDIATION: Basic processes (co-metabolism vs growth linked catabolism), methods and application strategies (biostimulation, bioaugmentation) examples, bioremediation of

metals (Cr, As, Se, Hg), radionucleids (U, Te), organic pollutants (PAHs, PCBs, pesticides, micropollutants, endocrine descriptive substances etc.), technological details in the application of bioremediation (in situ, ex situ methods).

- 4. USE OF FUNGI AND BACTERIA IN BIOREMEDIATION: White rot fungi bacteria, uses, advantages and disadvantages.
- 5. PHYTOREMEDIATION: Fundamentals and description of main methods in phytoremediation (phytoaccumulation, phytofiltration, phytovolatilization), application problems.
- 6. ENVIRONMENTAL BIOTECHNOLOGY AND AGRICULTURE: Microorganisms as biological insecticides (*Bacillus thuringienis*, Baculoviruses). Microorganisms as biofungicides Mode of Action (*Trichoderma sp. Pseudomonas fluorescens*, *Bacillus subtilis etc*). Microbes as biofertilizers and biostimulants Symbiotic systems between plants and microorganisms (nitrogen fixing bacteria, arbuscular mycorrhizal fungi), Plant growth promoting rhizobacteria, mode of action, applications and problems.
- 7. ENVIRONMENTAL BIOTECHNOLGY AND BIOFUELS: Biogas, Bioethanol, Biohydrogen. Description of industrial processes and the role of microorganisms, biotechnological interventions for optimization
- 8. ENVIRONMENTAL BIOTECHNOLOGY AND INDUSTRIAL PROCESSES: Microbially enhanced oil recovery, biological leaching of metals, biopolymers production, production of biosurfactants biological bleaching and biopulping in paper industry
- 9. FUNDAMENTS OF SYNTHETIC BIOLOGY Terminology and use of microorganisms in synthetic biology
- 10. SYNTHETIC MICROBIAL ECOLOGY AND APPLICATIONS Terminology, fundamentals, applications in environmental bioremediation, fermentations for food and beverages production
- 11. BIOLOGICAL PROCESSES IN WASTEWATER TREATMENTS: Microbial growth in wastewater treatment systems, nitrification/denitrification, phosphorus removal, anaerobic microbial processes (Anammox, Methanogens)

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY	In-class lecturing, face to face		
Face-to-face, in-class lecturing,			
distance teaching and distance			
learning etc.			
USE OF INFORMATION AND	Use of power point presentations		
COMMUNICATION TECHNOLOGY	Email communication with students		
Use of ICT in teaching, Laboratory	Upload of literature, examination papers and teaching		
Education, Communication with	material through e-class		
students			
COURSE DESIGN	Activity/Method	Semester workload	
Description of teaching techniques,	Lectures	39	
practices and methods:	Laboratory work	26	
Lectures, seminars, laboratory	Theory study	35	
practice, fieldwork, study and	Weekly individual		
analysis of bibliography, tutorials,	evaluation reports for	25	
Internship, Art Workshop,	laboratory exercises		

Interactive teaching, Educational visits, projects, Essay writing, Artistic creativity, etc.	Course total (25 hours of workload per credit unit)	125			
The study hours for each learning activity as well as the hours of self- directed study are given following the principles of the ECTS.					
STUDENT PERFORMANCE	Students performance evaluation				
METHODS Detailed description of the	• Through written exams at the end of the semester 80% of the final grade				
evaluation procedures:	• The mean grades of students assignments in the frame of laboratory practicals contributes 20% of the final grade				
Language of evaluation, assessment		Ũ			
(conclusive), multiple choice tests,					
short- answer questions, open- ended questions, problem solving.					
written work, essay/report, oral					
exam, presentation, laboratory work, otheretc.					
Specifically, defined evaluation criteria are stated, as well as if and where they are accessible by the students.					

(5) SUGGESTED BIBLIOGRAPHY:

-Suggested bibliography

- MICROBIOLOGY AND MICROBIAL TECHNOLOGY, Aggelis Georgios (STAMOULIS PUBLISHERS)
- ENVIRONMENTAL MICROBIOLOGY, Ntougias Spyridon, Aivatzlidis Alexandros, Melidis Paraschos (EMBRYO Publishing)

-Complementary bibliography

Lecture notes: presentations of the lectures and of the lab practicals are available in the e-class platform for all students to download