COURSE OUTLINE

(1) General information

_ 、 					
FACULTY/SCHOOL	TECHNOLOG	TECHNOLOGY			
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEMESTER		5°	
COURSE TITLE	Geographical Information Systems (GIS) and Spatial Analysis				
INDEPENDENT TEACHI	NG ACTIVITIES				
in case credits are awarded for separa	ate componen	ts/parts of the	WEEKLY		
course, e.g. in lectures, laboratory exercises, etc. If credits are			TEACHNG	CREDITS	
awarded for the entire course, give the weekly teaching hours HOURS					
and the total credits					
٦	THEORETICAL BACKGROUND			3	
LABORATORY PRACTICE			3	3	
		TOTAL	6	6	
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Skills Development Scientific area: Geoinformatics and environmental management				
PREREQUISITE COURSES:	Computing and Databases				
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

The aim of the course is for the students to gain knowledge and understanding of the topics in the scientific field of geographic information science. More specifically, students will acquire knowledge: (a)of modeling geospatial and descriptive data, (b) in the construction of spatial databases, (c) in the creation and analysis of complex spatial searches, (d) in the creation-composition of thematic (maps) and (e) in solving spatial problems.

Upon completion of the course, students will have acquired the basic theoretical and technical

knowledge for the use of Geographic Information Systems in Environmental Issues. They will also have acquired basic knowledge in the use of specialized, open source, GIS (QGIS) software.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

information by the use of appropriate technologies, Adapting to new situationsEnvironmental awareness Social, professional and ethical responsibility and sensitivity to gender issuesDecision-making Individual/IndependentCritical thinking Development of free, creative and inductive thinking uworkGroup/Team work Working in an international environmentWorking in an interdisciplinary environmentIntroduction of innovative research	appropriate technologies, Adapting to new situations Decision-making Individual/Independent work Group/Team work Working in an international environment Working in an interdisciplinary environment Introduction of innovative	Social, professional and ethical responsibility and sensitivity to gender issues Critical thinking Development of free, creative and inductive thinking (Othercitizenship, spiritual freedom, social awareness, altruism etc.)
---	--	---

- Search for, analysis and synthesis of data and information by the use of appropriate technologies,
- Group/Team work
- Working in an interdisciplinary environment,
- Environmental awareness
- Critical thinking

(3) COURSE CONTENT

The course refers to Geographical Information Science and focuses on Geographical Information Systems (GIS). The focus of the course is on spatial information related to environmental applications. Laboratory exercises are being developed with open source GIS software (QGIS). The course includes the following topics:

1. Introduction to GIS. Basic concepts of GIS. Data structures, vector – raster.

- 2. Geodata Sources & Open Source Software (QGIS-GRASS GIS).
- 3. Input data into a GIS. Symbols and methods for classifying vector information.
- 4. Georeference raster and vector data.
- 5. Geospatial Databases.
- 6. Digitalization and creation new geospatial models.

7. Cartographic concepts: Introduction to cartography and concepts such as thematic map, scale, projections and coordinate systems.

8. Creation of Maps: Learning to build maps, on various scales and layouts.

9. Spatial Analytical Processes: Implementation of basic spatial functions: Buffer zones, map overlay, select by location, select by attributes, etc.

- 10. Digital Elevation Model. Slope Orientation models.
- 11. Spatial analysis and GIS in the Environment.
- 12.3D applications in the Environment.
- 13. Repetition.

(4) TEACHING METHODS-ASSESSMENT

v 7		
MODES OF DELIVERY	•	Lectures
Face-to-face, in-class lecturing,	•	Semester projects - homework

distance teaching and distance			
learning etc. USE OF INFORMATION AND	. Devene sint and antistica		
	Powerpoint presentation.		
	e-mail communication.		
Use of ICT in teaching, Laboratory	e-class theory and exercises		
Education, Communication with			
students			
COURSE DESIGN	Activity/Method	Semester workload	
Description of teaching techniques,	Lectures	26	
practices and methods:	Workshop	26	
Lectures, seminars, laboratory	Laboratory work	30	
practice, fieldwork, study and	Theory study	55	
analysis of bibliography, tutorials,	Weekly individual		
Internship, Art Workshop,	evaluation reports for	13	
Interactive teaching, Educational	laboratory exercises		
visits, projects, Essay writing, Artistic	Course total		
creativity, etc.	(25 hours of workload per	150	
	credit unit)		
The study hours for each learning			
activity as well as the hours of self-			
directed study are given following			
the principles of the ECTS.			
STUDENT PERFORMANCE			
EVALUATION/ASSESSMENT			
METHODS	Final examinations		
Detailed description of the		t 2/2 of the laboratory	
evaluation procedures:	Students should attend at leas exercises	t 2/3 of the laboratory	
Language of evaluation, assessment			
methods, formative or summative	Work will be given during the semester to be assessed at a		
(conclusive), multiple choice tests,	rate of 30% on the final grade.		
short- answer questions, open-	Final Grade		
ended questions, problem solving,	70% in Final Exams + 30% in the semester projects (optional)		
written work, essay/report, oral			
exam, presentation, laboratory			
work, otheretc.			
Specifically, defined evaluation			
criteria are stated, as well as if and			
where they are accessible by the			
students.			

(5) SUGGESTED BIBLIOGRAPHY:

Suggested bibliography

•Longley P., Goodchild M., Maguire D., and D. Rhind, 2005, Geographical Information Systems and Science, Wiley, p. 517

•Burrough P. A., and R. McDonnell, 1998, Principles of Geographical Information Systems, Oxford University Press, p. 356.

•QGIS User guide – QGIS Training manual https://www.qgis.org/en/docs/index.html

•QGIS Training material https://www.qgis.org/en/site/forusers/trainingmaterial/index.html

•Στεφανάκης Ε, 2010, Βάσεις γεωγραφικών δεδομένων και συστήματα γεωγραφικών πληροφοριών, Παπασωτηρίου.

•Συγγρός Γ., 2004, Μετασχηματισμοί συντεταγμένων των γεωγραφικών δεδομένων στον Ελληνικό χώρο, συνέδριο Ελληνικής Εταιρίας γεωγραφικών πληροφοριών, Συνέδριο HellasGI.

-Complementary bibliography

Teacher's notes, full lecture material and tutorials.