COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOG	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES					
LEVEL OF STUDY	Undergraduate					
COURSE UNIT CODE	NEW COURSE	SEMESTER 5				
COURSE TITLE	MODERN METHODS FOR MONITORING ENVIRONMENTAL POLLUTION					
INDEPENDENT TEACHIN in case credits are awarded for separa course, e.g. in lectures, laboratory e awarded for the entire course, give	WEEKLY TEACHNG HOURS		CREDITS			
and the total credits						
1	HEORETICAL	3		3		
	LABORATORY PRACTICE			2		
TOTAL			5		5	
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Skills development					
PREREQUISITE COURSES:	ANALYTICAL AND ENVIRONMENTAL CHEMISTRY, ECOLOGICAL ENGINEERING					
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Νο					
COURSE WEBSITE (URL)	-					

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

Upon completion of the course the students are expected to

- Acquire knowledge on the use of modern and highly sensitive methods in the analysis of organic environmental pollutants
- Acquire skills in the selection of appropriate methods in the analysis of environmental samples
- Acquire knowledge in new fast-track technologies for the detection of pollutants in environmental samples

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management
synthesis of data and	Respect for diversity and multiculturalism
information by the use of	Environmental awareness
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender
Adapting to new situations	issues
Decision-making	Critical thinking
Individual/Independent	Development of free, creative and inductive thinking
work	
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism
Working in an	etc.)
international environment	
Working in an	
interdisciplinary	
environment	
Introduction of innovative	
research	

The teaching methods followed and the course content encourage:

- 1) The search, analysis and composing of information with the use of relevant technologies
- 2) Decision making upon critical evalution of data and information available
- 3) Group working
- 4) Individual working
- 5) Working in an international and multidisciplinary environment
- 6) Production of novel research ideas
- 7) Planning and management of constructions
- 8) Respect to environment and strengthening of environmental awareness
- 9) liberal, constructive and inductive thinking

(3) COURSE CONTENT

In the frame of the course novel and modern technologies currently used for the analysis of environmental samples will be presented. These methods are used for the detection and the qualitative and quantitative determination of environmental contaminants in complex environmental matrices. The fundamentals of analytical and biological methods will be presented along with applications in the analysis of water, soil and air samples. The headings of the lectures will be:

- 1. Review of the main organic and inorganic pollutants, Emerging micropollutants
- 2. Environmental Regulatory Framework Maximum acceptable residues limits in environmental samples
- 3. State of the art methods in instrumental analysis (non-target analysis) with chromatography (LC-MS/MS, LC-LTQ-Orbitrap, LC-TOF-MS)) for the detection of emerging pollutants
- 4. Application of modern analytical tools for the detection of organic pollutants in environmental samples
- 5. Lab-on-a-chip Applications in the detection of environmental pollutants

- 6. Biosensors Species and fundamentals of operation
- 7. Biosensors Applications in environmental samples

Laboratory Practicals

- 1. Analysis of environmental samples in LC-MS/MS identification of molecules
- 2. Analysis of environmental samples in GC-MS/MS-identification of volatile molecules
- 3. Calculation of the limit of detection (LOD) and limit of quantification (LOQ)

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY	In-class lecturing, face to face				
Face-to-face, in-class lecturing,					
distance teaching and distance					
learning etc.					
USE OF INFORMATION AND	Use of power point presentations				
COMMUNICATION TECHNOLOGY	Email communication with students				
Use of ICT in teaching, Laboratory	Upload of literature, examination papers and teaching				
Education, Communication with	material through e-class				
students					
COURSE DESIGN	Activity/Method	Semester workload			
Description of teaching techniques,	Lectures	39			
practices and methods:	Theory study	40			
Lectures, seminars, laboratory	Laboratory practicals	26			
practice, fieldwork, study and	Essay writing and				
analysis of bibliography, tutorials,	presentation	20			
Internship, Art Workshop,	Course total				
Interactive teaching, Educational	(25 hours of workload per	125			
visits, projects, Essay writing, Artistic	credit unit)				
creativity, etc.					
The study hours for each learning					
activity as well as the hours of self-					
directed study are given following					
the principles of the ECTS.					
STUDENT PERFORMANCE	Students performance evaluation				
EVALUATION/ASSESSMENT	Through written around at the size of the second state $000(-1)$				
METHODS	 Inrough written exams at the end of the semester 80% of the final grade. 				
Detailed description of the	une iniai grade				
evaluation procedures:	• Presentation of a case study by groups of students 20% of				
Leven of contration account	final grade				
Language of evaluation, assessment					
methods, formative or summative					
(conclusive), multiple choice tests,					
and a questions problem solving					
unitar work account and					
written work, essay/report, oral					
exam, presentation, laboratory					

(5) SUGGESTED BIBLIOGRAPHY:

-<u>Suggested bibliography</u>

• INSTRUMENTAL ENVIRONMENTAL ANALYSIS – Delligianis, Hela, TZIOLA Publishers

- NANOBIOTECHNOLOGY AND BIOSENSORS - Kintzios S., 2017, EMBRYO Publishers.

-<u>Complementary bibliography</u>

Lecture notes: presentations of the lectures and of laboratory practicals are available in the e-class platform for all students to download