COURSE OUTLINE NATURAL DISASTER MANAGEMENT

(1) General information

FACULTY/SCHOOL	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEMESTER			
COURSE TITLE	NATURAL DISASTER MANAGEMENT				
INDEPENDENT TEACHI	INDEPENDENT TEACHING ACTIVITIES				
in case credits are awarded for separate components/parts of the			WEEKLY		
course, e.g. in lectures, laboratory exercises, etc. If credits are			TEACHNG	CREDITS	
awarded for the entire course, give the weekly teaching hours			HOURS		
and the total credits					
THEORETICAL BACKGROUND			2	2	
LABORATORY EXERCISES		2	2		
TOTAL		4	4		
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	OPTIONAL COURSE				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	GREEK				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

NATURAL DISASTER MANAGEMENT provides the basic background of the concepts of natural disasters and environmental hazards to the students at national and global level. The subject of the course aims to introduce students to basic concepts regarding the type of disasters and hazards, such as hydrometeorological, biophysical, geophysical and technological hazards. Indicative examples are the drop in the level of surface water resulting in the disruption of ecosystems, volcanic threats, floods, glaciers, etc. Natural hazards and disasters are increasingly affecting humans and the devastating effects of natural disasters are becoming more and more apparent. The aim of the course is:

1. Students to understand the basic concepts that are developed in the course.

2. Students should be able to apply the knowledge gained in the course, in other courses of the following semesters, related to Preservation of Biodiversity, Assessment and Management of Environmental Risks, etc..

4. Students should be able to apply the knowledge they will acquire in the course, to solve relevant environmental problems.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and synthesis of data and information by the use of appropriate technologies, Adapting to new situations Decision-making Individual/Independent work Group/Team work Working in an international environment Working in an interdisciplinary environment Introduction of innovative research

Project planning and management Respect for diversity and multiculturalism Environmental awareness Social, professional and ethical responsibility and sensitivity to gender issues Critical thinking Development of free, creative and inductive thinking (Other......citizenship, spiritual freedom, social awareness, altruism etc.)

- Search, Analysis & synthesis of data
- Decision-making
- Individual/Independent work
- Respect for diversity and multiculturalism
- Environmental awareness
- self-criticism
- Promoting free, creative and inductive thinking

(3) COURSE CONTENT

Outline (weekly lectures and lab)

1. Typology of natural disasters (Definitions, classification, categories) - Separation of risks & disasters - Modeling (hydrological - meteorological, models etc.).

2. GIS data & Remote Sensing for applications in natural disasters

3. Risk Management Methodology (Risk Identification, Estimation, Assessment, Governance)

4. Hydrometeorological Hazards: Storms and Hail. Sections 4-12 follow the steps: Prediction (before), Monitoring (during), Assessment (after).

5. Hydrometeorological Hazards: Floods (Rainfall-Runoff Models, Flash Floods)

6. Hydrometeorological Hazards: Droughts and Desertification

7. Biophysical Hazards: Frost and Heatwaves

8. Biophysical Hazards: Wildfires

9. Biophysical Hazards: Biological Hazards (epidemics, pandemics, climate and health)

- 10. Geophysical Dangers: Landslides, avalanches
- 11. Geophysical Dangers: Volcanoes and earthquakes
- 12. Technological Hazards: Urban fires, oil spills, Chernobyl, international disasters.
- 13. Management Framework (International National) & Information on Natural Disasters

(4) TEACHING METHODS-ASSESS	SMENT			
MODES OF DELIVERY	 Weekly Lectures 			
Face-to-face, in-class lecturing,	 Laboratory Exercises 			
distance teaching and distance				
learning etc.				
USE OF INFORMATION AND	 Slides using Power point 			
COMMUNICATION TECHNOLOGY	 Communication with students via e-mails & e-class 			
Use of ICT in teaching, Laboratory				
Education, Communication with				
students				
COURSE DESIGN	Activity/Method	Semester workload		
Description of teaching techniques,	Lectures	40		
practices and methods:	Workshop	20		
Lectures, seminars, laboratory	Laboratory work	10		
practice, fieldwork, study and	Theory study	30		
analysis of bibliography, tutorials,	Weekly individual			
Internship, Art Workshop,	evaluation reports for			
Interactive teaching, Educational	laboratory exercises			
visits, projects, Essay writing, Artistic	Course total			
creativity, etc.	(25 hours of workload per	100		
	credit unit)			
The study hours for each learning				
activity as well as the hours of self-				
directed study are given following				
the principles of the ECTS.				
STUDENT PERFORMANCE				
EVALUATION/ASSESSMENT	EVALUATION			
METHODS	1. Final exams (70%)			
Detailed description of the				
evaluation procedures:	2. Written work – essay (30%)			
Language of evaluation, assessment				
methods, formative or summative				
(conclusive), multiple choice tests,				
short- answer questions, open-				
ended questions, problem solving,				
written work, essay/report, oral				
exam, presentation, laboratory				
work, otheretc.				
Charlinghy defined and water				
Specifically, defined evaluation				
criteria are stated, as well as if and				
where they are accessible by the students.				
students.				

(5) SUGGESTED BIBLIOGRAPHY:

-Suggested bibliography

- Environmental disasters, natural recovery and human responses. Roger del Moral University of Washington and Lawrence R. Walker University of Nevada, Cambridge University press, NY, USA, ISBN-13 978-0-521-86034-5
- Φυσικές και Τεχνολογικές Καταστροφές, Ε. Λέκκας http://www.elekkas.gr/images/stories/pdfdocs/books/tk.pdf.
- Βασικές Αρχές και Εφαρμογές του Επιχειρησιακού Σχεδιασμού για τη Διαχείριση Φυσικών Καταστροφών και Τεχνολογικών Κινδύνων, Ε. Λέκκας http://www.elekkas.gr/images/stories/pdfdocs/books/Epixeirisiakos Sxediasmos.pdf
- Κίνδυνοι και Καταστροφές, Έννοιες και Εργαλεία Αξιολόγησης, Προστασίας, Διαχείρισης. Ελληνικά Ακαδημαϊκά Συγγράμματα και Βοηθήματα, ΚΑΛΛΙΠΟΣ. Καλλιόπη Σαπουντζάκη, Μιράντα Δανδουλάκη, 2015
- 5. Αγρομετεωρολογία, Ανάλυση και Προσομοίωση. Ελληνικά Ακαδημαϊκά Συγγράμματα και Βοηθήματα, ΚΑΛΛΙΠΟΣ. Νικόλαος Ρ. Δαλέζιος. ISBN: 978-960-603-134-2, σελ. 481, Νοεμ. 2015.
- 6. Science and Policy of Natural Hazards, Prof. Kerry Emanuel, Prof. Stephane Rondenay, Jane Connor. MIT Course Number 12.103 http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-103-science-andpolicy-of-natural-hazards-spring-2010/
- 7. Disasters and Ecosystems: Resilience in a Changing Climate. United Nations Environment Programme (UNEP), Global Universities Partnership on Environment for Sustainability, and Cologne University of Applied Sciences, Germany, Introduction to Statistical Decision Theory. Pratt, John W., Howard Raiffa, and Robert Schlaifer. MIT Press, 1995
- Concepts and Methodologies of Environmental Hazards Affecting Agriculture and Agroecosystems. Chapter 1, pp: xx-xx, in "Techniques for Disaster Risk Management and Mitigation". Dalezios, N., G.P. Petropoulos & I. Faraslis. Publisher AGU-Wiley. ISBN-10: 111935918X [in press], 2020

-Complementary bibliography

Teacher's notes