COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEME	MESTER 8 th		
COURSE TITLE	CONSERVATI	TION OF BIODIVERSITY			
INDEPENDENT TEACHIN in case credits are awarded for separa course, e.g. in lectures, laboratory e awarded for the entire course, give and the total c	NG ACTIVITIES ate componen exercises, etc. I the weekly te redits	ts/parts of the f credits are aching hours	WEEKLY TEACHNG HOURS		CREDITS
	THEORETICAL	BACKGROUND	ROUND 3 3		3
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	ENVIRONMENTAL MANAGEMENT AND EXCLUSION				
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	GREEK				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

Students are expected to understand the modern theories on the biodiversity of species and ecosystems and the role that Biology plays in their preservation. Conservation Biology is a comprehensive, interdisciplinary scientific field that has developed in response to the challenge of conserving the biodiversity of species and ecosystems, taking measures to protect habitats, over -exploitation, climate change and more generally. It also addresses the threats and dangers of natural disasters and man-made actions on the loss of habitats of its species (flora and fauna) and rationally addresses their consequences, based on the sustainable sustainability of ecosystems for conservation of biodiversity.

. Upon successful completion of the course, the student will be able to:

1. To develop and cultivate the necessary knowledge and skills, which will be used as tools for understanding Biodiversity and the ethical principles of Conservation Biology.

2. To understand the principles and procedures of the structure and operation of the Ecosystem

3. To know the range of biological diversity and to investigate the effect of human actions on species, genetic diversity and ecosystems.

4. To assess the threats and dangers of natural disasters and man-made actions on the loss of habitats of its species (flora and fauna) and to deal rationally with their consequences, based on the sustainable sustainability of Ecosystems for conservation of Biodiversity.

5. To learn the type of measures and actions required for the maintenance of Biodiversity for both (in situ) and for (ex situ) sustainable use and conservation of species.

6. To develop practical approaches aimed at preventing the extinction of species, conserving genetic diversity, and protecting and restoring biocommunities and ecosystems.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management
synthesis of data and	Respect for diversity and multiculturalism
information by the use of	Environmental awareness
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender
Adapting to new situations	issues
Decision-making	Critical thinking
Individual/Independent	Development of free, creative and inductive thinking
work	
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism
Working in an	etc.)
international environment	
Working in an	
interdisciplinary	
environment	
Introduction of innovative	
research	

• Adaptation to new situations

- Work in an interdisciplinary environment
- Production of new research ideas
- Respect for the natural environment
- Practice criticism and self-criticism
- Promoting free, creative and inductive thinking

(3) COURSE CONTENT

<u>Theory</u>

1. Biology of conservation. The international field of Conservation Biology. Global biodiversity protection.

2. Definition of biodiversity, Rio's Convention on Biological Diversity. Use and restoration of Ecosystems. Sustainability and sustainability.

3. Variety of Species, Genetic Variety, Variety of Species and Ecosystems.

4. Value of biodiversity, Ecological-Economic and Environmental-Economic. Caring for a sustainable future, biodiversity assessment.

5. Threats to biodiversity: Loss of habitat, fragmentation of habitat. Environmental degradation, consequences and consequences.

6. Global climate change. Atmospheric and Water pollution. Dangerous chemicals. Environmental hazards and human health.

7. Mapping biodiversity. Biogeographical areas. Endemism. Over-exploitation. Biological invaders. Illnesses. Particularly environmentally friendly.

8. Island Ecology and conservation. Anthropogenic losses and threats to island ecosystems.

9. Disappearances - Disappearance rhythms. Preservation of populations and species. Protection of natural resources.

10. Protected areas - management. Preservation outside protected areas.

11. Effect of environmental parameters and anthropogenic effects on biodiversity, in

agricultural and natural ecosystems, in plant and animal species.

12. Principles and measures of biodiversity management, conservation prospects. Hellenic Strategy for the Preservation of Biodiversity.

13. Organic farming and biodiversity. Biodiversity of forest and a gricultural ecosystems.

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY		
Face-to-face, in-class lecturing,	• Lectures in the classroom or	by distance
distance teaching and distance	 Team discussion 	
learning etc.		
USE OF INFORMATION AND		
COMMUNICATION TECHNOLOGY	 Powerpoint. 	
Use of ICT in teaching, Laboratory	 View video material 	l.
Education, Communication with	• e-mail.	
students	• e-class	
COURSE DESIGN	Activity/Method	Semester workload
Description of teaching techniques,	Lectures	39
practices and methods:	Theory study	16
Lectures, seminars, laboratory	Team working	20
practice, fieldwork, study and	Course total	
analysis of bibliography, tutorials,	(25 hours of workload per	75
Internship, Art Workshop, Interactive	credit unit)	
teaching, Educational visits, projects,		
Essay writing, Artistic creativity, etc.		
The study hours for each learning		
activity as well as the hours of self-		
directed study are given following the		
principles of the ECTS.		
EVALUATION/ASSESSMENT		
METHODS		
Detailed description of the	Students are assessed in Greek	. The final arade is formed
evaluation procedures:	by tests which include:	
Language of evaluation according	by tests when herade.	
Language of evaluation, assessment		
(conclusive) multiple shoire tests	 Written exam: 8 	0% of the final grade (A)
(conclusive), multiple choice tests,	• Tasks: 20%	of the final grade (B)
short-answer questions, open-ended		
work accov/report and avam		
more essay/report, oral exam,	Final grade = 80	% (A) + 20% (B)
other etc		

Specifically,	defined	evaluation
criteria are st	ated, as w	ell as if and
where they	are access	ible by the
students.		

(5) SUGGESTED BIBLIOGRAPHY:

Suggested bibliography:

1. Gaston Kevin J., Spicer John I. 2008. (In Greek) Biodiversity. ISBN: 978-960-12-1687-4. Publisher : UNIVERSITY STUDIO PRESS. Eudoxus Code: 17153

2.Veres oglou D., 2010 (3rd Edition in Greek). Ecology. ISBN: 978-960-7013-36-1. Publisher Savvas-Gartagannis, Eudoxus Code: 32998680

3. Primack R. B, 2017 A Primer of Conservation Biology, , Sinauer Publications) (In Greek) ISBN: 978-960-12-2331-5 Publisher: UNIVERSITY STUDIO PRESS. Eudoxus Code: 68369295