COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY					
DEPARTMENT	ENVIRONMENTAL SCIENCES					
LEVEL OF STUDY	Undergraduate					
COURSE UNIT CODE	NEW COURSE	SEMESTER		7 th	7 th	
COURSE TITLE	SOIL REMEDIATION					
INDEPENDENT TEACHING ACTIVITIES in case credits are awarded for separate components/parts of the course, e.g. in lectures, laboratory exercises, etc. If credits are awarded for the entire course, give the weekly teaching hours and the total credits			WEEKLY TEACHNG HOURS		CREDITS	
٦	HEORETICAL	4		4		
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	BACKGROUND					
PREREQUISITE COURSES:	NO					
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	GREEK					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES					
COURSE WEBSITE (URL)						

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

The course provides specialized knowledge on cutting-edge technologies used to restore contaminated soils and water with an emphasis on physicochemical, biological and thermal methods of soil restoration, as well as in-situ and ex-situ groundwater restoration technologies. Removal of potentially toxic metal elements are considered as an example of application.

Upon successful completion of the course, the student will be able to:

1. Understand the processes by which the transport and disposal of pollutants in the soil and subsoil takes place.

2. To evaluate methods and techniques for the restoration of pollution, based on their viability and the possibilities of their application in different pollution scenarios.

3. Take responsibility and strategically design innovative solutions in the service of sustainable pollution recovery.

4. To process and evaluate the results of rehabilitation tests.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management
synthesis of data and	Respect for diversity and multiculturalism
information by the use of	Environmentalawareness
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender
Adapting to new situations	issues
Decision-making	Critical thinking
Individual/Independent	Development of free, creative and inductive thinking
work	
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism
Working in an	etc.)
international environment	
Working in an	
interdisciplinary	
environment	
Introduction of innovative	
research	

• Search, analyze and synthesize data and information, using the necessary technologies

- Decision making
- Autonomous work
- Teamwork
- Production of new research ideas
- Project design and management
- Respect for the natural environment
- Promoting free, creative and inductive thinking

(3) COURSE CONTENT

<u>Theory</u>

- 1. Introduction General concepts
- 2. Transport of pollutants to the soil
- 3. Physicochemical recovery methods
- 4. Biological treatment
- 5. Thermal treatment
- 6. Ex-situ treatments
- 7. In-situ treatments
- 8. Heavy metal management
- 9. Examples of applications

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY					
Face-to-face, in-class lecturing,	 Lectures in the classroom or by distance 				
distance teaching and distance	• Team discussion				
learning etc.					
USE OF INFORMATION AND	- Deveragint				
COMMUNICATION TECHNOLOGY	• Powerpoint.				
Use of ICT in teaching, Laboratory	view video material				
Education, Communication with	• e-mail.				
students	• e-class				
COURSE DESIGN	Activity/Method	Semester workload			
Description of teaching techniques,	Lectures	52			
practices and methods:	Theory study	38			
Lectures, seminars, laboratory	Team working	10			
practice, fieldwork, study and	Course total				
analysis of bibliography, tutorials,	(25 hours of workload per	100			
Internship, Art Workshop,	credit unit)				
Interactive teaching, Educational					
visits, projects, Essay writing, Artistic					
creativity, etc.					
The study hours for each learning					
activity as well as the hours of self-					
directed study are given following					
the principles of the ECTS.					
STUDENT PERFORMANCE					
EVALUATION/ASSESSMENT					
METHODS					
Detailed description of the					
evaluation procedures:					
Language of evolution account	Students are assessed in Greek or English The final grade is				
methods formative or summative	formed by tests which include				
(conclusive) multiple choice tests					
short- answer questions open-					
ended questions problem solving	• Written exam: 70% of the final grade (A)				
written work essav/report oral	• Tasks: 30%	of the final grade (B)			
exam, presentation, laboratory		2			
work. otheretc.	Final and the 20				
	Final grade = 70	1% (A) + 30% (B)			
Specifically, defined evaluation					
criteria are stated, as well as if and					
where they are accessible by the					
students.					

(5) SUGGESTED BIBLIOGRAPHY:

-Suggested bibliography

- Soil Remediation and Rehabilitation Treatment of Contaminated and Disturbed Land Authors: Meuser, Helmut. eBook ISBN: 978-94-007-5751-6. DOI: 10.1007/978-94-007-5751-6. 2013, Springer.
- Τεχνολογίες αποκατάστασης εδαφών και υπόγειων υδάτων από επικίνδυνους ρύπους Συγγραφείς: Ε. Γιδαράκος, Μ. Αϊβαλιώτη, ISBN: 960-8065-52-6, Εκδόσεις Ζυγός 2005
- Εδαφικές Διεργασίες και Αποκατάσταση Εδαφών
 Συγγραφείς: Ε.Μ. Παπαθεοδώρου, Γ.Π. Στάμου, ISBN: 978-960-603-314-8, ΣΥΝΔΕΣΜΟΣ ΕΛΛΗΝΙΚΩΝ
 ΑΚΑΔΗΜΑΪΚΩΝ ΒΙΒΛΙΟΘΗΚΩΝ, ΕΜΠ
- Green and Sustainable Remediation: A Practical Framework Prepared: The Interstate Technology & Regulatory Council Green and Sustainable Remediation Team, November 2011
- European achievements in soil remediation and brownfield redevelopment

JRC102681 - 2017, ISBN 978-92-79-71690-4 (PDF), doi:10.2760/818120 (online)