COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY			
DEPARTMENT	ENVIRONMENTAL SCIENCES			
LEVEL OF STUDY	Undergraduate			
COURSE UNIT CODE	NEW COURSE	SEMESTER		2nd
COURSE TITLE	INTRODUCTORY FLUID MECHANICS			
INDEPENDENT TEACHING ACTIVITIES in case credits are awarded for separate components/parts of the course, e.g. in lectures, laboratory exercises, etc. If credits are awarded for the entire course, give the weekly teaching hours and the total credits			WEEKLY TEACHNG HOURS	CREDITS
THEORETICAL BACKGROUND		4	4	
LABORATORY PRACTICE		-	-	
TOTAL			4	4
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Background	knowledge		
PREREQUISITE COURSES:	Νο			
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

The course objective is to expose the students to the basic methodology of solving problems related to fluids in equilibrium or in motion such as:

calculation of hydrostatic forces on plane or curved submerged surfaces in stationary liquids, the calculation of the various parameters in the flow field of real or ideal fluids, control volume analysis of fluid motion, the calculation of laminar viscous flow in simple geometries, as well as an introduction to turbulent flows and boundary-layer theory.

The aim of the course is:

1. Students should be able to understand the basic concepts that are developed in the lesson.

2. Students should be able to apply the knowledge gained in the course in other courses of the next semester, related to Coastal Systems Management, Mathematical Modeling of Environmental Systems, Toxic and Hazardous Waste Management, Modern Hydraulics, Modern Environmental Monitoring Methods studies, etc.).

3. Students should be able to apply the knowledge they will gain in the lesson, to solve environmental problems.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management
synthesis of data and	Respect for diversity and multiculturalism
information by the use of	Environmental awareness
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender
Adapting to new situations	issues
Decision-making	Critical thinking
Individual/Independent	Development of free, creative and inductive thinking
work	
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism
Working in an	etc.)
international environment	
Working in an	
interdisciplinary	
environment	
Introduction of innovative	
research	

- Search for, analysis and synthesis of data and information by the use of appropriate technologies,
- Decision-making
- Individual/Independent work
- Group/Team work
- Environmental awareness
- Critical thinking
- Development of free, creative and inductive thinking

(3) COURSE CONTENT

- 1) Introduction. Properties of Fluids
- 2) Hydrostatics
- 3) Fluid motion Bernoulli Equation
- 4) Advanced Kinematics Concepts of fluid
- 5) Fluid flow analysis with control volumes
- 6) Integral Analysis of Fluid Motion
- 7) Laminar and turbulent flow
- 8) Introduction to boundary Layer Theory

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY	Lectures			
Face-to-face, in-class lecturing,	 Semester projects - homework 			
distance teaching and distance				
learning etc.				
USE OF INFORMATION AND	Powerpoint presentation.			
COMMUNICATION TECHNOLOGY	e-mail communication.			
Use of ICT in teaching, Laboratory	 e-class theory and exercises 			
Education, Communication with				
students				
COURSE DESIGN	Activity/Method	Semester workload		
Description of teaching techniques,	Lectures	39		
practices and methods:		13		
•	Workshop	13		
	Laboratory work	-		
practice, fieldwork, study and	Theory study	38		
analysis of bibliography, tutorials,	Weeklyindividual			
Internship, Art Workshop,	evaluation reports for	10		
Interactive teaching, Educational	laboratory exercises			
visits, projects, Essay writing, Artistic	Coursetotal			
creativity, etc.	(25 hours of workload per	100		
	credit unit)			
The study hours for each learning	· · · · · · · · · · · · · · · · · · ·			
activity as well as the hours of self-				
directed study are given following				
the principles of the ECTS.				
STUDENT PERFORMANCE				
EVALUATION/ASSESSMENT				
METHODS				
Detailed description of the	• Final examinations			
evaluation procedures:	Students should watch at least			
	 Work will be given during the 			
Language of evaluation, assessment	rate of 30% on the final grade.			
methods, formative or summative				
(conclusive), multiple choice tests,	<u>Final</u> (
short- answer questions, open-	70% in Final Exams + 30% in th	ne semester projects		
ended questions, problem solving,				
written work, essay/report, oral				
exam, presentation, laboratory				
work, otheretc.				
work, Utileietc.				
Specifically, defined evaluation				
criteria are stated, as well as if and				
where they are accessible by the				
students.				

(5) SUGGESTED BIBLIOGRAPHY:

-<u>Suggested bibliography</u>

-Liakopoulos A., 2019. Fluid mechanic, 2nd edition, Tziolas Publications. Thessaloniki. (in greek) -Noutsopoulos, G., and Christodoulou, G., 1996. Fluid mechanics for Civil Engineers. NTU Athens. (In Greek)

-Ganoulis, J.G., 1982. Introduction to fluid mechanics. Thessaloniki. (ingreek)

- Fox & McDonald 1998. Introduction to Fluid Mechanics. Wiley.

- F. M. White 1986. Fluid Mechanics. McGraw-Hill.

- Demetriou, J.D., 1997. Fluid mechanics, Volume 1 - Introduction. Athens. (in greek)

- Demetriou, J.D., 1997. Fluid mechanics, Volume 2 - Applications. Athens. (in greek)

-Kotsovinos, N.E., 1983. Hydraulics, Volume I. Xanthi. (in greek)

-Papaioannou, A., 1996. Fluid mechanics, Volumes I and II. Athens. (in greek)

-Tsangaris, S., 1995. Mechanics of fluids. Symeon Editions, Athens. (in greek)

-Rouse, H, 1961. Fluid mechanics for hydraulic engineers. Dover.

-Streeter, VL, 1961. Handbook of fluid dynamics. McGraw-Hill.

-Van Dyke, M, 1982. An album of fluid motion. Parabolic Press.

-<u>Complementary bibliography</u>

Teacher's notes and the full lecture material, which are available through the asynchronous education platform