COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	TECHNOLOGY				
DEPARTMENT	ENVIRONMENTAL SCIENCES				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	NEW COURSE	SEMESTER 5 th – 7 th		-7 th	
COURSE TITLE	MATHEMATICAL MODELING OF ENVIRONMENTAL SYSTEMS				
INDEPENDENT TEACHING ACTIVITIES in case credits are awarded for separate components/parts of the course, e.g. in lectures, laboratory exercises, etc. If credits are awarded for the entire course, give the weekly teaching hours and the total credits		WEEKLY TEACHNG HOURS		CREDITS	
	THEORETICAL BACKGROUND		4		4
LABORATORY PRACTICE		-		-	
		TOTAL	4		4
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Scientificarea: environmental management and restoration				
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION & EXAMINATION/ASSESSMENT:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

Guidelines for writing Learning Outcomes

The aim of the course is to acquaint students with mathematical models and their methodology. Mathematics has been used for many thousands of years for the study, description and utilization of phenomena of the natural world that surrounds us, but even creations of the imagination. The great usefulness of mathematics results from the ability, through their use, to make predictions for the above phenomena, in other words to create models that represent the phenomena under study. This is exactly the goal of mathematical modeling. That is, the development of the mathematical description of a phenomenon, a system or a process and their study using mathematical tools. These tools can be a system of equations, a set of numbers, an algorithm, a thought process, etc.

The aim of the course is:

1. Students should be able to understand the basic concepts that are developed in the lesson.

2. Students should be able to a) study and understand the behavior of complex systems using Mathematics, b) use and develop new, mathematical tools needed to solve a model, c) predict / simulate (prediction). / simulation) behaviors and properties of complex systems through mathematical models, d) to control the hypotheses of the model and to contribute to its improvement.

3. Students should be able to apply the knowledge they will gain in the lesson, to solve environmental problems.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and	Project planning and management
synthesis of data and	Respect for diversity and multiculturalism
information by the use of	Environmental awareness
appropriate technologies,	Social, professional and ethical responsibility and sensitivity to gender
Adapting to new situations	issues
Decision-making	Critical thinking
Individual/Independent	Development of free, creative and inductive thinking
work	
Group/Team work	(Othercitizenship, spiritual freedom, social awareness, altruism
Working in an	etc.)
international environment	
Working in an	
interdisciplinary	
environment	
Introduction of innovative	
research	

- Search for, analysis and synthesis of data and information by the use of appropriate technologies,
- Decision-making
- Individual/Independent work
- Group/Team work
- Environmental awareness
- Critical thinking
- Development of free, creative and inductive thinking

(3) COURSE CONTENT

1. Introduction - Definitions

2. Mathematical modeling process - familiarization with mathematical modeling methods: Fourier analysis, use of computational packages, adaptation with the least squares method, etc.

3. Collection and organization of data, from experimental measurements, for a specific system-phenomenon

4. Creating a mathematical model of the system, through appropriate assumptions / assumptions

5. Solve the mathematical problem by using existing ones, or by creating new, mathematical tools

6. Check the model's predictions through experimental observations

7. Improving the model and the assumptions on which it is based

8. Repetitive exercises

1)

(4) TEACHING METHODS-ASSESSMENT

MODES OF DELIVERY	 Lectures 		
Face-to-face, in-class lecturing,	Semester projects - homework		
distance teaching and distance			
learning etc.			
USE OF INFORMATION AND	Powerpoint presentation.		
COMMUNICATION TECHNOLOGY	e-mail communication.		
Use of ICT in teaching, Laboratory	• e-class theory and exercises		
Education, Communication with			
students			
COURSE DESIGN	Activity/Method	Semester workload	
Description of teaching techniques,	Lectures	39	
practices and methods:	Workshop 13		
Lectures, seminars, laboratory	Laboratory work	-	
practice, fieldwork, study and	Theory study	38	
analysis of bibliography, tutorials,	Weeklyindividual		
Internship, Art Workshop,	evaluation reports for	10	
Interactive teaching, Educational	laboratory exercises		
visits, projects, Essay writing, Artistic	Course total		
creativity, etc.	(25 hours of workload per	100	
	credit unit)		
The study hours for each learning			
activity as well as the hours of self-			
directed study are given following			
the principles of the ECTS.			
STUDENT PERFORMANCE			
EVALUATION/ASSESSMENT			
METHODS	• Final examinations		
Detailed description of the	Students should watch at lease	st half seminars	
evaluation procedures:	• Work will be given during the	semester to be assessed at a	
	rate of 30% on the final grade		
Language of evaluation, assessment			
methods, formative or summative	Final G	Grade	
(conclusive), multiple choice tests,	70% in Final Exams + 30% in the semester projects		
snort- answer questions, open-			
ended questions, problem solving,			
written work, essay/report, oral			
exam, presentation, laboratory			
work, otheretc.			
Specifically, defined evaluation			

criteria are stated, as well as if and	
where they are accessible by the	
students.	

(5) SUGGESTED BIBLIOGRAPHY:

-<u>Suggested bibliography</u>

- G. Bergeles, Computational Liquid Mechanics, Athens, 2006
- Chr. Koutitas, Computer Hydraulics, Xanthi, 1992
- Introduction to Numerical Methods for Water Resources, W.L. Wood

-<u>Complementary bibliography</u>

Teacher's notes and the full lecture material, which are available through the asynchronous education platform