

COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Technology			
ACADEMIC UNIT	Department of Environmental Sciences			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	AE808		SEMESTER	8th
COURSE TITLE	ANAEROBIC PROCESSES – ENVIRONMENTAL and ENERGY APPLICATIONS			
INDEPENDENT TEACHING ACTIV	/ITIES	WEEK	LY TEACHING HOURS	CREDITS
Теа	Teaching Hours		3	3
COURSE TYPE	Specialised general knowledge			
PREREQUISITE COURSES	None			
LANGUAGE OF INSTRUCTION and EXAMINATIONS	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Νο			
COURSE WEBSITE (URL)	https://eclass.uth.gr/courses/ENV_U_165/			

(2) LEARNING OUTCOMES

Learning outcomes

The aim of the course is to reinforce students' knowledge on anaerobic biological processes and their use in environmental protection and restoration, and bioenergy production.

General Competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Team work
- Respect for the natural environment
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

- Aerobic and anaerobic processes basic characteristics.
- Kinetics and microbiology of anaerobic digestion, factors affecting kinetics: pH, ammonia, temperature, trace elements, etc.
- Applications in environmental protection: wastewater treatment, sludge treatment, denitrification, reduction of pathogenic microorganisms and odours.
- Types and characteristics of anaerobic bioreactors (digestors), anaerobic digestion for the coproduction of heat and electricity (Biomethane), substrates and kinetics (stages) of anaerobic digestion, biofertilizer production.
- Hydrogen sulphide capture techniques, alcohol production, mixed processes (enzymatic and thermophilic anaerobic processes) for chemical production of raw materials from cellulosic by-products and waste.

(4) TEACHING and LEARNING METHODS – EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 Use of PowerPoint slides View material in video Communication with students via e-mail Use of asynchronous distance learning (e-class) 		

TEACHING METHODS	Activity	Semester workload			
	Lectures	39			
	Study and analysis of bibliography	36			
	Course total	75			
	(25 hours workload per credit)	75			
STUDENT PERFORMANCE	Students' performance is evaluated in the Greek language. The final				
EVALUATION	grade is determined by:				
	• A written exam (at the end of the semester) that contributes				
	70% to the final grade, applying one or more of the following				
	evaluation methods: Multiple choice questions, short-answer				
	questions, problem solving.				
	• The preparation and delivery of an individual written				
	assignment (during the semester) that contributes 30% to the final				
	grade.				
	Final Grade = 70% Exam Grade + 30% Assignment Grade				

(5) ATTACHED BIBLIOGRAPHY

- EPA (2015) 'Anaerobic digestion and its applications, <u>https://www.epa.gov/sites/production/files/2016-07/documents/ad_and_applications-final_0.pdf</u>
- Sioulas, K., Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R. (2009) *Biogas Handbook*. Center for Renewable Energy Sources (CRES), <u>www.lemvigbiogas.com/BiogasHandbookGR.pdf</u>. (in Greek)