



# **COURSE OUTLINE**

### (1) GENERAL

| SCHOOL                                       | School of Technology                    |      |                   |         |
|----------------------------------------------|-----------------------------------------|------|-------------------|---------|
| ACADEMIC UNIT                                | Department of Environmental Sciences    |      |                   |         |
| LEVEL OF STUDIES                             | Undergraduate                           |      |                   |         |
| COURSE CODE                                  | AY702                                   |      | SEMESTER          | 7th     |
| COURSE TITLE                                 | ENVIRONMENTAL BIOTECHNOLOGY             |      |                   |         |
| INDEPENDENT TEACHING ACTIV                   | /ITIES                                  | WEEK | LY TEACHING HOURS | CREDITS |
| Теа                                          | Teaching Hours                          |      | 5                 | 6       |
| COURSE TYPE                                  | Special Background                      |      |                   |         |
| PREREQUISITE COURSES                         | None                                    |      |                   |         |
| LANGUAGE OF INSTRUCTION and<br>EXAMINATIONS  | Greek                                   |      |                   |         |
| IS THE COURSE OFFERED TO<br>ERASMUS STUDENTS | Yes                                     |      |                   |         |
| COURSE WEBSITE (URL)                         | https://eclass.uth.gr/courses/ENV U 144 |      |                   |         |

### (2) LEARNING OUTCOMES

#### Learning outcomes

Upon successful completion of the course, students will be able to:

- Understand the basic principles of Environmental Biotechnology and its field of applications.
- Exhibit thorough knowledge of the main biotechnological applications of microorganisms in environmental practices, for the restoration of polluted environmental substrates.
- Comprehend the usefulness of microorganisms as biological factories for the production of new products, with low environmental footprint, to be used, as well, in the production of biofuels, in agriculture (biological pesticides, mycorrhizae, plant growth promoting rhizobacteria), in the paper industry, the plastics industry, the chemicals industry, metal mining, etc.
- Critically evaluate situations and data, design and synthesize plans to solve environmental problems with the use of biotechnology.

#### • Design new biotechnological processes to create products with low environmental footprint.

#### **General Competences**

- Search, analysis and synthesis of data and information using the necessary technologies
- Adaptation to new situations
- Decision making
- Teamwork
- Work in an interdisciplinary environment
- Generating new research ideas
- Project planning and management
- Respect for the natural environment

# (3) SYLLABUS

- Climate change and environmental footprint.
- Microorganisms.
- Genetic diversity Mutations.
- Recombinant DNA technology.
- Synthetic Biology.
- Genetically Modified Organisms.
- Plant Restoration.
- Biological preparations.
- Energy produce.
- Reduction of Energy Consumption.

- Bioreactors.
- Biological Treatment of Liquid Waste.
- Biological Treatment of Solid Waste.

### Laboratory exercises:

Detection of ice-nucleating organisms | *Trichoderma* Cultivation |Galanthus Database | Applications of oregano oil | GMO Detection | Biogas from manure | Applications of biological ice-nucleators | Applications of non-biological ice-nucleators | Experiment for the selection of plants resistant to cold.

### (4) TEACHING and LEARNING METHODS – EVALUATION

| DELIVERY                                            | Face-to-face                                                                                                                                                                          |                   |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| USE OF INFORMATION AND<br>COMMUNICATIONS TECHNOLOGY | <ul> <li>Use of PowerPoint slides</li> <li>View material in video</li> <li>Communication with students via e-mail</li> <li>Use of asynchronous distance learning (e-class)</li> </ul> |                   |  |  |
| TEACHING METHODS                                    | Activity                                                                                                                                                                              | Semester workload |  |  |
|                                                     | Lectures                                                                                                                                                                              | 39                |  |  |
|                                                     | Laboratory practice                                                                                                                                                                   | 26                |  |  |
|                                                     | Study and analysis of bibliography                                                                                                                                                    | 40                |  |  |
|                                                     | Essay writing                                                                                                                                                                         | 45                |  |  |
|                                                     | Course total                                                                                                                                                                          | 150               |  |  |
|                                                     | (25 hours workload per credit)                                                                                                                                                        |                   |  |  |
| STUDENT PERFORMANCE                                 | Students' performance is evaluated in the Greek language. The final grade is determined by:                                                                                           |                   |  |  |
| EVALUATION                                          |                                                                                                                                                                                       |                   |  |  |
|                                                     | • A written exam (at the end of the semester) that contributes                                                                                                                        |                   |  |  |
|                                                     | 70% to the final grade, applying one or more of the following                                                                                                                         |                   |  |  |
|                                                     | evaluation methods: Multiple-choice questions, short-answer questions, problem-solving.                                                                                               |                   |  |  |
|                                                     |                                                                                                                                                                                       |                   |  |  |
|                                                     | • Elaboration of an individual or group assignment that                                                                                                                               |                   |  |  |
|                                                     | contributes 30% to the final grade.                                                                                                                                                   |                   |  |  |
|                                                     | Final Grade = 70% Exam Grade + 30% Assignment Grade                                                                                                                                   |                   |  |  |

# (5) ATTACHED BIBLIOGRAPHY

- Angelis, G., (2017) *Microbiology and Microbial Technology*. Athens: UNIBOOKS-Stamoulis Publications. (in Greek)
- Dougias, Spyridon, Aivazidis, Alexandros, & Melidis, Paraschos (2012) *Environmental Microbiology*. Athens: Embryo Publications. ISBN: 978-960-524-634-1. (in Greek)
- Kyriakidis, A. Dimitrios (2000) *Biotechnology*. Thessaloniki: Ziti Publications. (in Greek)
- Renneberg, Reinhard, Berkling, Viola, Loroch, Vanya, & Süßbier, Darja (2019), *Biotechnology for beginners*. Nicosia: Broken Hill Publishers Ltd. ISBN: 9789925575381
- Zoumboulis, A. and Matis, K. A. (2010) *Processes in Biotechnology.* Thessaloniki: Tziola Publications. (in Greek)